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Abstract 

Due to the superior ability of photocatalysis to inactivate a wide range of 

harmful microorganisms, it is being examined as a viable alternative to 

traditional disinfection methods such as chlorination, which can produce 

harmful byproducts. Photocatalysis is a versatile and effective process that can 

be adapted for use in many applications for disinfection in both air and water 

matrices. Additionally, photocatalytic surfaces are being developed and tested 

for use in the context of “self-disinfecting” materials. Studies on the 

photocatalytic technique for disinfection demonstrate this process to have 

potential for widespread applications in indoor air and environmental health, 

biological, and medical applications, laboratory and hospital applications, 

pharmaceutical and food industry, plant protection applications, wastewater 

and effluents treatment, and drinking water disinfection. Studies on 

photocatalytic disinfection using a variety of techniques and test organisms are 

reviewed, with an emphasis on the end-use application of developed 

technologies and methods. 

1. Introduction 

Applications of photocatalytic processes are widely recognized as viable 

solutions to environmental problems [1–3]. Disinfection of bacteria is of 

particular importance, because traditional methods such as chlorination are 

chemical intensive and have many associated disadvantages. For example, in 
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water treatment applications, chlorine used for disinfection can react with 

organic material to generate chloro-organic compounds that are highly 

carcinogenic [4, 5]. Furthermore, some pathogens such as viruses, certain 

bacteria such as Legionella, and protozoans such 

as Cryptosporidium and Giardia lamblia cysts have been known to be resistant 

to chlorine disinfection [6, 7]. Other treatment alternatives such as ozonation 

and irradiation using germicidal lamps (254 nm) have their own problems and 

limitations, such as the lack of residual effect [8] and generation of small 

colony variants [9] for the latter and production of toxic disinfection 

byproducts for the former [10]. 

In comparison, the  semiconductor commonly used in photocatalytic processes 

is nontoxic, chemically stable, available at a reasonable cost, and capable of 

repeated use without substantial loss of catalytic ability [11]. Heterogeneous 

photocatalysis using titanium dioxide is a safe, nonhazardous, and ecofriendly 

process which does not produce any harmful byproducts. Extensive research in 

this field has been done in the area of photocatalytic removal of organic, 

inorganic, and microbial pollutants [12, 13]. 

The mechanism of bactericidal action of  photocatalysis, as reported by Sunada 

et al. is attributed to the combination of cell membrane damage and further 

oxidative attack of internal cellular components, ultimately resulting in cell 

death [14]. 

Since the breakthrough work of Matsunaga et al. in 1985 reporting the 

application of  photocatalysis for the destruction of Lactobacillus acidophilus, 

Saccharomyces cerevisiae, and Escherichia coli using platinum-loaded  [15], 

there has been much interest in the biological applications of this process. A 

very comprehensive review of the application of  photocatalysis for 

disinfection of water is given by Mccullagh et al. [16], with many others 

available in the literature [17–21]. 

Research in the field of photocatalytic disinfection has been very diverse, with 

the /UV process being shown to successfully inactivate many microorganisms 

including bacteria such as E. coli [22–24], L. acidophilus[15], Serratia 

domonas stutzeri [25], Bacillus pumilus [26], Streptococcus mutans [1], yeasts 

such as S. cerevisiae[15], algae such as Chlorella vulgaris [15], and viruses 

such as phage MS2 [15, 27, 28], B. fragilis bacteriophage[15, 27], Poliovirus 

I [28], Cryptosporidium parvum [29], and Giardia intestinalis [30]. 

Research efforts are being made to improve the efficiency of the  catalyst by 

means of doping with various metals [31–33] and nonmetals [34, 35]. Other 

parameters which can be varied in a photocatalytic process, such as the source 

of ultraviolet irradiation [18] and factors affecting process efficiency [36] have 

also been under investigation. Additionally, there are countless reactor designs 

and configurations [37, 38] used to exploit photocatalytic disinfection for a 

wide range of applications, as this process can be used in both water and air 

matrices [39]. The current review will focus on developments in photocatalytic 

disinfection for application in the following contexts: indoor air and 

environmental health, biological and medical applications, laboratory and 

hospital applications, pharmaceutical and food industry, plant protection 
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applications, wastewater and effluents treatment, and finally, drinking water 

disinfection. 

2. Indoor Air and Environmental Health 

The photocatalytic process is well recognized for the removal of organic 

pollutants in the gaseous phase such as volatile organic compounds (VOCs), 

having great potential applications to contaminant control in indoor 

environments such as residences, office buildings, factories, aircrafts, and 

spacecrafts [40, 41]. 

To increase the scope of the photocatalytic process in application to indoor air, 

the disinfection capabilities of this technique are under investigation [39]. 

Disinfection is of importance in indoor air applications because of the risk of 

exposure to harmful airborne contaminants. Bioaerosols are a major contributor 

to indoor air pollution, and more than 60 bacteria, viruses, and fungi are 

documented as infectious airborne pathogens. Diseases transmitted via 

bioaerosols include tuberculosis, Legionaries, influenza, colds, mumps, 

measles, rubella, small pox, aspergillosis, pneumonia, meningitis, diphtheria, 

and scarlet fever [42]. Traditional technologies to clean indoor air include the 

use of activated charcoal filters, HEPA filters, ozonation, air ionization, and 

bioguard filters. None of these technologies is completely effective [20]. 

In the pioneering work by Goswami et al. [43, 44] investigating the disinfection 

of indoor air by photocatalysis, a recirculating duct facility was developed to 

inactivate biological contaminants in air with photocatalytic techniques. 

Experiments using Serratia Marcescens in air achieved a 100% destruction of 

microorganisms in a recirculating loop in 600 minutes [43]. This time was 

reduced to less than 3 minutes in later experiments [45]. 

Photocatalytic oxidation can also inactivate infectious microorganisms which 

can be airborne bioterrorism weapons, such as Bacillus anthracis (Anthrax) 

[46–48]. A photocatalytic system was investigated by Knight in 2003 to reduce 

the spread of severe acute respiratory syndrome (SARS) on flights [49], 

following the outbreak of the disease. Similarly, in 2007 the avian influenza 

virus A/H5N2 was shown to be inactivated from the gaseous phase using a 

photocatalytic prototype system [39]. 

Inactivation of various gram-positive and gram-negative bacteria using visible 

light and a doped catalyst [50] and fluorescent light irradiation similar to that 

used in indoor environments was studied [51] and shows great promise for 

widespread applications. 

It was also shown that E. coli could be completely mineralized on a  coated 

surface in air [42]. Carbon mass balance and kinetic data for complete 

oxidation of E. coli, A. niger, Micrococcus luteus, and B. subtillus cells and 

spores were subsequently presented [52]. A comprehensive mechanism and 

detailed description of the photokilling of E. coli on coated surfaces in air has 

been extensively studied in order understand to a considerable degree and in a 

quantitative way the kinetics of E. coli immobilization and abatement using 
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photocatalysis, using FTIR, AFM, and CFU as a function of time and 

peroxidation of the membrane cell walls [53–57]. 

Novel photoreactors and photo-assisted catalytic systems for air disinfection 

applications such as those using polyester supports for the catalyst [58], carbon 

nanotubes [59], combination with other disinfection systems [60], membrane 

systems [61], use of silver bactericidal agents in cotton textiles [62–64] for the 

abatement of E. coli in air, high surface area CuO catalysts [65], and structure 

silica surfaces [66] have also been reported. 

In terms of environmental health, the antifungal capability of  photocatalysis 

against mold fungi on coated wood boards used in buildings was confirmed 

[67] using A. nigeras a test microbe, and UVA irradiation. 

3. Biological and Medical Applications 

Due to the disinfection abilities of photocatalytic processes, they are being 

explored for use in medical applications. Studies have been done 

using  coatings on bioimplants to implement photocatalysis for antibacterial 

purposes [47, 68, 69]. Shiraishi et al. explored the photocatalytic activity of S. 

aureus, a common pathogenic bacterium in implant-related infection, 

using  film on stainless steel and titanium substrates [70]. The bactericidal 

effect of the coating was confirmed upon UV irradiation, and the use of these 

coated photocatalytic substrates present a useful strategy for the control of such 

infections associated with biomedical implants. 

Photocatalysis is also able to kill animal cells, such as in the antitumor activity 

shown using subcutaneous titania injection onto skin tumours followed by 40 

minutes of UV illumination [71]. This procedure produced a tenfold tumour 

volume reduction after three weeks, where the catalyst and light alone control 

runs showed tumor increases in volume by factors of 30–50. The use of 

photocatalysis for cancer cell treatment has also been documented elsewhere 

[1, 72]. 

As previously alluded to in air-disinfection strategies, photocatalysis can be 

employed to remove harmful airborne biological threats such as Anthrax 

[48, 73]. In this sense, it can be an effective technique for combating bioterror 

and preventing the spread of airborne biological threats. 

4. Laboratory and Hospital Applications 

Particularly in microbiological laboratories and in areas in intensive medical 

use, frequent and thorough disinfection of surfaces is needed in order to reduce 

the concentration of bacteria and to prevent bacterial transmission. 

Conventional methods of disinfection with wiping are not long-term effective, 

and are staff and time intensive. These methods also involve the use of harsh 

and aggressive chemicals. Disinfection with hard ultraviolet light (UVC) is 

usually unsatisfactory, since the depth of penetration is inadequate and there 

are occupational health risks [74]. 
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Photocatalytic oxidation on surfaces coated with titanium dioxide offers an 

alternative to traditional methods of surface disinfection. Research has 

examined the biocidal activity of thin films of titania anchored to solid surfaces 

[74–76]. The effectiveness of this process was demonstrated using bacteria 

relevant to hygiene such as E. coli, p. aeruginosa, S. aureus, and E. 

faecium [74]. The inactivation of E. coli (ATCC8739) cells deposited on 

membrane filters during irradiation with fluorescent light was also shown as an 

application of self-disinfecting surfaces [77]. 

 thin films deposited on stainless steel using a novel flame-assisted CVD 

technique were also tested for antimicrobial activity on E. coli [69]. There is a 

wider range of applications for this self-disinfecting material because of the 

desirable mechanical properties and resistance to corrosion of stainless steel. 

Transparent films on this substrate have also been shown to be effective for 

sterilization of B. pumilus [78]. In this study, the -coated stainless steel was 

shown to have a higher photocatalytic activity than the same coating on glass 

substrates. 

Titania photocatalysts doped with CuO were coated on surfaces and evaluated 

for biocidal activity [79]. This investigation also explored the synergistic effect 

of photocatalysis and toxicity of copper to inactivate bacteriophage T4 and E. 

coli. 

Enhanced photocatalysis using nitrogen-doped  was also reported for its visible 

light-induced bactericidal activity against human pathogens [80]. It was 

proposed in this study that photocatalytic disinfection using visible light can 

offer a means of continuous disinfection for surfaces constantly in contact with 

humans, such as door handles and push buttons. Visible light-induced 

inactivation of E. coli was also studied using titania codoped with nitrogen and 

sulfur [81–84]. This introduces new disinfectant opportunities in public 

environments, such as public toilets, schools, hospitals, stations, airports, 

hotels, or public transportation, which are ideal places for the transmission of 

pathogens [85, 86]. 

Photocatalysis has also been investigated for the inactivation of prions, the 

infectious agents of a family of transmissible, fatal, neurodegenerative 

disorders affecting both humans and animals [87]. These prions may be 

transmitted via ingestion of contaminated food or during medical treatments 

with contaminated biological materials or surgical tools. The effectiveness of 

photocatalytic oxidation for inactivating these prions can help to reduce the risk 

of spread and demonstrates the practical applications of this technology for 

disinfection of contaminated surfaces and inanimate objects. 

Another application of photocatalysis in a hospital setting is for the control of 

Legionnaire’s disease, which is associated to hot water distribution systems 

containing bacteria of the Legionella species [88]. In laboratory scale studies, it 

was shown that photocatalytic oxidation using /UV was able to mineralize the 

cells of four strains of L. pneumophilia serogroup 1 (strain 977, strain 1009, 

strain 1004, and ATCC 33153) upon prolonged treatment. This implies that the 

process used might be a viable alternative to the traditional disinfection 
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processes used for the control of Legionella bacteria in hospital hot water 

systems, such as thermal eradication and hyperchlorination [89]. 

5. Pharmaceutical and Food Industry 

Due to the antibacterial applications of -mediated photooxidation, this process 

shows promise for the elimination of microorganisms in areas where the use of 

chemical cleaning agents or biocides is ineffective or is restricted by 

regulations, for example in the pharmaceutical and food industries [33].  is 

nontoxic and has been approved by the American Food and Drug 

Administration for use in human food, drugs, cosmetics, and food contact 

materials [90]. 

 powder-coated packaging film was shown to inactivate E. coli (ATCC 

11775) in vitro when irradiated with UVA light [90]. Actual tests on cut lettuce 

stored in a -coated film bag under such irradiation also showed this method to 

be effective for the reduction of E. coli colonies, indicating that the  coated film 

could reduce microbial contamination on the surfaces of solid food products 

and hence reduce the risk of microbial growth in food 

packaging.  photocatalysis has also shown to be effective for the inactivation of 

other foodborne bacteria such as Salmonella chloraesuis subsp., Vibrio 

parahaemolyticus, and Listeria monocytogenes[69]. 

Surface disinfection is also of importance to food processing, as foodborne 

infections can be caused by the proliferation and resistance to cleaning 

procedures of pathogenic germs on surfaces of the production equipment in 

such industries. Studies with E. coli strains (PHL 1273) [91] synthesizing curli, 

a type of appendage that allows the bacteria to stick to surfaces and form 

biofilms, were able to inactivate this organism using titania and various types 

of UV irradiation. In dark events studies, following the bacterial inactivation, 

no bacterial cultivability was recovered after 48 hours, indicating that the 

durability of the disinfection was adequate. Nitrogen doping of the titania 

photocatalyst was also reported in a separate study [92] with the use of visible 

light to inactivate E. coli and biofilm bacteria. Disinfection of E. coli using -

containing paper and UV fluorescent irradiation has also been shown [93]. 

6. Plant Protection Applications 

Photocatalytic disinfection is potentially very important in the control and 

inactivation of pathogenic species present in the nutritive solution in circulating 

hydroponic agricultures [94]. Many plant pathogens can be transmitted by 

irrigation and recycled waters used in hydroponic agriculture. Conventional 

bactericidal methods often apply chemical pesticides to disinfect these 

pathogens, but these are often harmful to animals, humans, and the 

environment due to their residual toxicity [95]. Photocatalytic disinfection of 

these plant pathogens using  may be used as a new tool for plant protection and 

an alternative to the use of harsh chemicals. 
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Using  thin film on a glass substrate and UVA irradiation, Enterobacter 

cloacae SM1 and Erwinia carotovorasubsp. Caratovora ZL1, phytopathogenic 

enterobacteria that cause basal rot and soft rot in a variety of vegetable crops, 

were efficiently inactivated [95]. Subsequent studies investigated the effects of 

doping the titania catalyst with various photosensitive dyes using visible light 

irradiation [96]. It was shown that the disinfection of the phytopathogenic 

bacteria causing basal and soft rot could be efficiently carried out under visible 

light using these doped catalysts. 

Solar photocatalytic disinfection using batch process reactors and titania 

photocatalysts was also shown to be effective for the disinfection of five wild 

strains of the Fusarium genus (F. equiseti, F. oxysporum, F. anthophilum, F. 

verticilloides, and F. solani), a common plant pathogen [97]. In this case, 

natural solar radiation was used and the photocatalytic solar disinfection was 

compared to solar-only disinfection for these fungi. The photocatalytic process 

was found to be faster than the solar-only disinfection in all trials. 

The disinfecting ability of titania photocatalyst films was also tested on 

pathogens of mushroom diseases:Trichoderma harzianum, Cladobotryum 

varium, Spicellum roseum, and P. tolaasii. The disinfection of these species 

was confirmed by experiments conducted in mushroom growing rooms under 

black light irradiation, and subsequently, white light irradiation [98]. 

7. Wastewater and Effluents 

The use of photocatalysis for water and wastewater treatment is a topic well 

documented in the literature, especially with respect to solar photocatalysis 

[17–21, 99–102]. Due to the ability of photocatalysis to mineralize many 

organic pollutants, it has been used for remediation of contaminated 

groundwaters through the use of parabolic solar concentrating type reactors. 

Photocatalysis has been used in engineering scale for solar photocatalytic 

treatment of industrial nonbiodegradable persistent chlorinated water 

contaminants [21], and in field scale for treatment of effluents from a resins 

factory [103]. This process has also shown to be effective for treatment of 

wastewaters from a 5-fluororacil (a cancer drug) manufacturing plant [104], 

distillery wastewater [105], pulp and paper mill wastewater [106], dyehouse 

wastewater [17], and oilfield produced water [35]. 

However, the disinfection capabilities of photocatalytic processes have not 

thoroughly been exploited for treatment of wastewaters. Wastewater 

reclamation and reuse is of growing importance, especially in areas where the 

freshwater supply is limited, and so effective disinfection of wastewaters is 

necessary. Any technical means of sewage reuse is limited by persistent 

organic pollutants and microorganisms which are not removed by the 

conventional mechanical and biological treatment train [107]. Additional 

treatment is therefore necessary before any reuse can take place. 

Early work on photocatalytic disinfection of municipal secondary wastewater 

effluents showed an inactivation of coliform bacteria and Poliovirus I using 

https://www.hindawi.com/journals/ijp/2010/764870/#B95
https://www.hindawi.com/journals/ijp/2010/764870/#B96
https://www.hindawi.com/journals/ijp/2010/764870/#B97
https://www.hindawi.com/journals/ijp/2010/764870/#B98
https://www.hindawi.com/journals/ijp/2010/764870/#B17
https://www.hindawi.com/journals/ijp/2010/764870/#B21
https://www.hindawi.com/journals/ijp/2010/764870/#B99
https://www.hindawi.com/journals/ijp/2010/764870/#B102
https://www.hindawi.com/journals/ijp/2010/764870/#B21
https://www.hindawi.com/journals/ijp/2010/764870/#B103
https://www.hindawi.com/journals/ijp/2010/764870/#B104
https://www.hindawi.com/journals/ijp/2010/764870/#B105
https://www.hindawi.com/journals/ijp/2010/764870/#B106
https://www.hindawi.com/journals/ijp/2010/764870/#B17
https://www.hindawi.com/journals/ijp/2010/764870/#B35
https://www.hindawi.com/journals/ijp/2010/764870/#B107


suspensions of titanium dioxide and fluorescent and sunlight irradiation, 

respectively [28]. 

Photocatalysis is also useful for disinfection of sewage containing organisms 

which are highly resistant to traditional disinfection methods, such 

as Cryptosporidium parvum [108] and noroviruses [109]. 

Municipal wastewater effluents from a sewage disposal plant in Hannover, 

Germany were treated in a slurry  reactor under UVA irradiation to 

simultaneously detoxify and disinfect the samples [110]. The photocatalytic 

treatment was able to diminish the concentration of dissolved organic 

pollutants (indicated by TOC and COD), and as well inactivate pathogenic 

microorganisms (indicated by E. coli). A similar result was obtained from 

studies monitoring Faecal streptococci and total coliforms using slurry  systems 

with UVA lamps and solar irradiation, respectively [111]. 

The investigation of bacterial consortia of E. coli and Enterococcus species 

present in real wastewaters from a biological wastewater treatment plant in 

Lausanne (Switzerland) [112] indicated that the Enterococcus species are less 

sensitive to photocatalytic treatment than coliforms and other gram-negative 

bacteria. Additionally, the effects of temperature, turbidity, and various other 

physical parameters of the samples on the photocatalytic inactivation of E. 

coli were investigated [113]. 

Further research investigates enhanced photocatalysis to improve the efficiency 

of disinfection of wastewaters for reuse, for example, by the use of titania-

activated carbon catalyst mixtures [114], and through the development of 

nanocrystalline photocatalytic  membranes [115]. The latter is of particular 

importance in aeronautical applications, as it combines membrane separation 

technologies with advanced oxidation technologies to create photocatalytic 

composite membranes designed for the treatment and reuse of water on long-

duration space missions [116]. 

An inexpensive approach to synthesizing a novel nitrogen-doped  photocatalyst 

has also been developed [117], improving the efficiency of visible light-

induced disinfection of wastewaters, and introducing a new generation of 

catalysts for this application. 

8. Drinking Water Disinfection 

Titania photocatalysis has been proven to be effective in the removal of 

chemical compounds and microbiological pathogens from water. A thorough 

review by Mccullagh et al. [16] of the application of photocatalysis for the 

removal of biological species in this context examines studies on the 

disinfection effect of  suspensions, effect of additives and pH, respectively, on 

the photocatalytic abilities and disinfection effect of  thin films, and the effect 

of electrochemically applied potential on the photobactericidal effect of thin 

films. The current discussion will focus on the various applications of 

photocatalytic drinking water disinfection. 

8.1. Drinking Water Production in Developing Countries 
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In 2004, it was estimated that about 15% of the world’s population, mostly 

living in the less-favored regions of the planet, did not have access to enough 

fresh water to satisfy their daily needs, and this number was expected to double 

by 2015 [118]. This represents a serious public health issue since waterborne, 

water-washed, and water-based diseases are associated with lack of 

improvement in domestic water supply and adequate sanitation [119]. 

Development of low cost-effective methods for removal of pollutants from 

water supplies can help alleviate this problem. Especially in rural communities, 

water disinfection must have sufficiently low operational costs. Alternative 

technologies to traditional chlorination are now being considered for household 

use [120]. 

Solar disinfection (SODIS) is a simple technology that is capable of 

inactivating many waterborne pathogenic bacteria using the combined effect of 

solar UVA radiation and temperature [121–124]. This method is low cost and 

does not produce toxic byproducts, however, limits the volume of water subject 

to treatment (typically 2L per exposed water bottle) and has a disadvantageous 

long time of process (typically 2 day exposure for complete inactivation) [119]. 

The combination of sunlight and photocatalyst is a promising option for water 

treatment in areas with insufficient infrastructure but high yearly sunshine. The 

use of compound parabolic reactors as an efficient technology to collect and 

focus diffuse and direct solar radiation onto a transparent pipe containing 

contaminated water has demonstrated feasibility to disinfect water 

using  suspensions [125–127]. 

The European Union International Cooperation program (INCO) has sponsored 

initiatives for developing a solar photocatalysis-based cost-effective technology 

for water decontamination and disinfection in rural areas of developing 

countries, the SOLWATER and AQUACAT projects, respectively [94]. These 

projects are aimed at developing a solar reactor to decontaminate and disinfect 

small volumes of water, and field tests with the final prototypes were carried 

out to validate operation under real conditions [127]. 

The final SOLWATER prototype was composed of two tubes containing 

Alstrohm paper impregnated with titanium dioxide, and two tubes containing a 

supported photosensitizer [94]. These tubes are placed on a compound 

parabolic concentrating collector and run in series, where the electricity is 

provided by a solar panel (Figure 1). 

Field tests using the SOLWATER prototype placed the reactor in the yard of a 

shanty house in Los Pereya, Tucuman, Argentina and studied the removal of 

bacterial contamination during three months of testing using natural water 

contaminated with coliforms, E. Faecalis, and P. aeruginosa, as well as high 

levels of natural organic matter and variable inorganic pollutants [127]. The 

SOLWATER reactor was shown to be effective for this application. Similar 

tests have been performed in photoreactors installed in various geographic 

regions, including Egypt, France, Greece, Mexico, Morocco, Peru, Spain, 

Switzerland, and Tunisia [94]. 

Other research in the field of potable water production in developing countries 

includes the development of affordable and efficient technology in the form of 
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batch borosilicate glass and PET plastic SODIS reactors fitter with flexible 

plastic inserts coated with  powder [128]. These were shown to be 20 and 25% 

more effective, respectively, than SODIS alone for the inactivation of E. 

coli K12. This novel system was also able to reduce the concentration 

of Cryptosporidium parvum oocysts present [129]. It should be also noted that 

there has also been significant research done in the advance of solar 

disinfection of this highly resistant organism using SODIS alone 

[123, 130, 131]. 

8.2. Surface Water Treatment 

While the majority of photocatalytic disinfection studies reported are carried 

out with distilled water or buffer solutions [16], there have been attempts to 

quantify the effects of the chemical constituents of natural surface waters 

on  photocatalysis [132, 133]. It has been shown, using surface water samples, 

that the presence of inorganic ions and humic acids decrease the photocatalytic 

disinfection rate of E. coli [133]. 

Other efforts have been made to evaluate photocatalysis applications using real 

waters [134–138]. For example, the integration of  photocatalysis into 

traditional water treatment processes for the removal of organic matter, which 

has variable levels during the year, was studied in the UK using three surface 

water samples [136]. 

Natural water samples from the Cauca River in Cali, Columbia showed 

drastic E. coli culturable cell concentration increase 24 hours after stopping 

irradiation [135]. This was not observed for the control experiment using an E. 

coli suspension in distilled water. It was concluded that caution should be taken 

when making predictions based on simple models as they are not necessarily 

representative of natural crude water samples. 

The effect of pH, inorganic ions, organic matter, and  on E. coli photocatalytic 

inactivation by  was studied by simulating natural and environmental 

conditions of these parameters using distilled and tap water samples [132]. The 

results of this study and others [133] confirmed that laboratory results using 

ultrapure water samples are not representative of the real application in natural 

waters. 

In studies done on surface water samples by Ireland et al. [134], it was 

concluded that inorganic-radical scavengers can have a major negative impact 

on the efficacy of the photocatalytic process, and the presence of organic 

matter in the water samples also degrades the E. coli inactivation kinetics. 

Using a field-scale compound parabolic collector at the Swiss Federal Institute 

of Technology (EPFL), in Lausanne, natural water from the Leman Lake was 

used to suspend E. coli in the presence of  and irradiation under solar 

conditions [126]. From studies on the postirradiation period, the effective 

disinfection time (EDT) was defined as the time necessary to avoid bacterial 

regrowth after 24 h (or 48 h) in the dark after stopping phototreatment. It was 

suggested that the EDT necessary be used as an indicator of the impact of the 

solar photocatalytic process on bacteria instead of the UV dose required to 

achieve a certain level of disinfection. 
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8.3. Eutrophic Water Treatment 

Another application of photocatalytic disinfection is in the treatment of 

eutrophic water. Control of algal blooms in eutrophic water is important 

because toxic cyanobacterial blooms in drinking water supplies may cause 

human health problems [137]. Copper-based algaecides can be used to control 

these blooms, however this method introduces secondary environmental 

problems [138]. 

Photocatalytic inactivation of three species of algae: Anabaena, 

microcystis, and Melosira, was studied using  coated glass beads and UV-light 

irradiation [138]. Complete photocatalytic inactivation of Anabaena, 

microcystis, and Melosira was obtained in about 30 minutes, while the 

inactivation efficiency for Melosira was somewhat lower due to the inorganic 

siliceous wall surrounding the cells. 

The floating -coated hollow glass beads were introduced into a mesocosm 

installed at the Nakdong River, Kimhae, Korea [138]. This mesocosm was a 

25 m2 and 2 m deep semipermeable membrane. The concentrations of 

chlorophyll-a were measured for one month, and it was shown that more than 

50% of the chlorophyll-a concentration could be reduced using photocatalysts 

and natural solar radiation. A picture of the experimental mesocosm is depicted 

in Figure 2. 

8.4. Groundwater Treatment 

The ability of photocatalysis to break down and detoxify harmful organic 

chemicals has been exploited for groundwater treatment, as shown by 

engineering scale demonstrations using solar photocatalysis to remediate 

groundwater contaminated from leaking underground storage tanks [139]. 

The disinfecting abilities of photocatalytic processes for application to treating 

groundwater contaminated with microorganisms such as F. Solani [140] was 

also investigated and shown to be effective for the removal of such 

microorganisms. Natural well water containing the F. Solani species and solar 

illumination and employing CPCs was also explored as a process configuration 

for this application [141]. 

9. Conclusion 

The photocatalytic technique is a versatile and efficient disinfection process 

capable of inactivating a wide range of harmful microorganisms in various 

media. It is a safe, nontoxic, and relatively inexpensive disinfection method 

whose adaptability allows it to be used for many purposes. Research in the field 

of photocatalytic disinfection is very diverse, covering a broad range of 

applications. 

Particularly, the use of photocatalysis was shown to be effective for various air-

cleaning applications to inactivate harmful airborne microbial pathogens, or to 

combat airborne bioterror threats, such as Anthrax. Photocatalytic thin films on 
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various substrates were also shown to have potential application for “self-

disinfecting” surfaces and materials, which can be used for medical implants, 

“self-disinfecting” surgical tools and surfaces in laboratory and hospital 

settings, and equipment in the pharmaceutical and food industries. 

Photocatalytic food packaging was shown to be a potential way to reduce the 

risk of foodborne illnesses in cut lettuce and other packaged foods. In terms of 

plant protection, photocatalysis is being investigated for use in hydroponic 

agricultures as an alternative to harsh pesticides. For water treatment 

applications, photocatalytic disinfection has been studied and implemented for 

drinking water production using novel reactors and solar irradiation. Eutrophic 

waters containing algal blooms were also shown to be effectively treated 

using -coated hollow beads and solar irradiation. 

The effectiveness of photocatalytic disinfection for inactivating 

microorganisms of concern for each of these applications was presented, 

highlighting key studies and research efforts conducted. While the performance 

of this technology is still to be optimized for the specific applications, based on 

the literature presented, it is abundantly evident that photocatalysis should be 

considered as a viable alternative to traditional disinfection methods in some 

cases. 

In a move towards a more environmentally friendly world, traditional solutions 

to classic problems, such as the production of safe drinking water, must shift 

towards more sustainable alternatives. Photocatalytic disinfection is not only a 

replacement technology for traditional methods in traditional applications, but 

also a novel approach for solving other disinfection problems, such as the 

control of bioterror threats. In this sense, the strength of photocatalytic 

disinfection lies in its versatility for use in many different applications. 
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